mandelbrot set


See On Github

Data

Contributor

Generic placeholder thumbnail

by skuschel

in python

Tags

Source Code

*.pyc
*~
#!/bin/python2

#Author: Stephan Kuschel

### TODO: Write a parallel version of the Monte Carlo Algorithm. Should become an easy example for how to work with parallel programming in python.

import math
import random
import time


def _apfelrekursion(c, max_recursion):
    z = 0 + 0j
    zehn = range(9)
    while max_recursion > 0:
                max_recursion = max_recursion - 9
                #10 recursions at a time give a reasonable speed up. Doing more might end up in overflow errors.
                for x in zehn:
                    z = z * z + c
                if (z.real > 2) | (z.real < -2) | (z.imag > 2)|(z.imag < -2):
                    break
    return z


def isinmandelbrot(c, max_recursion=1000):
    '''
    checks if complex value z is part of the Mandelbrot set or not. Limit number of max recursions approx. to max_recursion.
    Recursion:
    z_0 = 0
    z_{n+1} = z_n^2 + c
    Complex value c is part of Mandelbrot_set if abs((z_n)_n) < inf for n approaching inf.
    Find more at: http://en.wikipedia.org/wiki/Mandelbrot_set
    '''
    cneu = _apfelrekursion(c, max_recursion)
    return (cneu.real < 2) & (cneu.real > -2) & (cneu.imag < 2) & (cneu.imag > -2)

def mandelbrot_area_mc(N):
    '''
    Performs Monte Carlo Integration to calculate Mandelbrot Sets Area using N points.
    Returns: (Area, Number of points)
    '''
    ret = 0
    n = N
    while n > 0:
        n = n - 1
        #Dont want to assume symmetry
        if isinmandelbrot(complex(random.uniform(-2, 0.5), random.uniform(-1, 1))):
            ret += 1
    #Area is ret * (Area in cmplx plane the random numbers are covering)
    return float(ret) * 5 / N, ret


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser(description='''Calculating the Mandelbrot Set Area in Complex plane using Monte Carlo integration.
    Unconfirmed theory guesses the Area to be sqrt(6*pi - 1) - e = 1.506591...
    See also: http://en.wikipedia.org/wiki/Mandelbrot_set''')
    parser.add_argument('-n', type=float, help='Number of points to use for Monte Carlo integration.', default=10000)
    args = parser.parse_args()

    N = int(args.n)
    print 'Starting Monte Carlo using %s points...' % N
    startzeit = time.time()
    area, A = mandelbrot_area_mc(N)
    print 'Area:        ' + str(area)
    print 'Area StdDev: ' + str(5 * math.sqrt(float(A)) / N)
    print 'Time (sec):  ' + str(time.time() - startzeit)